5,948 research outputs found

    Surface-induced layer formation in polyelectrolytes

    Full text link
    We analyze, by means of an RPA calculation, the conditions under which a mixture of oppositely charged polyelectrolytes can micro-segregate in the neighborhood of a charged surface creating a layered structure. A number of stable layers can be formed if the surface is sufficiently strongly charged even at temperatures at which the bulk of the mixture is homogeneous.Comment: 6 pages, 3 figures, revtex, epsf, psfi

    Competing Interactions among Supramolecular Structures on Surfaces

    Full text link
    A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associated with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.Comment: 3 pages, 3 eps figure

    Synchronization of the Frenet-Serret linear system with a chaotic nonlinear system by feedback of states

    Get PDF
    A synchronization procedure of the generalized type in the sense of Rulkov et al [Phys. Rev. E 51, 980 (1995)] is used to impose a nonlinear Malasoma chaotic motion on the Frenet-Serret system of vectors in the differential geometry of space curves. This could have applications to the mesoscopic motion of biological filamentsComment: 12 pages, 7 figures, accepted at Int. J. Theor. Phy

    Charge reversal of colloidal particles

    Full text link
    A theory is presented for the effective charge of colloidal particles in suspensions containing multivalent counterions. It is shown that if colloids are sufficiently strongly charged, the number of condensed multivalent counterion can exceed the bare colloidal charge leading to charge reversal. Charge renormalization in suspensions with multivalent counterions depends on a subtle interplay between the solvation energies of the multivalent counterions in the bulk and near the colloidal surface. We find that the effective charge is {\it not} a monotonically decreasing function of the multivalent salt concentration. Furthermore, contrary to the previous theories, it is found that except at very low concentrations, monovalent salt hinders the charge reversal. This conclusion is in agreement with the recent experiments and simulations

    Polyelectrolyte Multilayering on a Charged Planar Surface

    Full text link
    The adsorption of highly \textit{oppositely} charged flexible polyelectrolytes (PEs) on a charged planar substrate is investigated by means of Monte Carlo (MC) simulations. We study in detail the equilibrium structure of the first few PE layers. The influence of the chain length and of a (extra) non-electrostatic short range attraction between the polycations and the negatively charged substrate is considered. We show that the stability as well as the microstructure of the PE layers are especially sensitive to the strength of this latter interaction. Qualitative agreement is reached with some recent experiments.Comment: 28 pages; 11 (main) Figs - Revtex4 - Higher resolution Figs can be obtained upon request. To appear in Macromolecule

    Stability of additive-free water-in-oil emulsions

    Full text link
    We calculate ion distributions near a planar oil-water interface within non-linear Poisson-Boltzmann theory, taking into account the Born self-energy of the ions in the two media. For unequal self-energies of cations and anions, a spontaneous charge separation is found such that the water and oil phase become oppositely charged, in slabs with a typical thickness of the Debye screening length in the two media. From the analytical solutions, the corresponding interfacial charge density and the contribution to the interfacial tension is derived, together with an estimate for the Yukawa-potential between two spherical water droplets in oil. The parameter regime is explored where the plasma coupling parameter exceeds the crystallization threshold, i.e. where the droplets are expected to form crystalline structures due to a strong Yukawa repulsion, as recently observed experimentally. Extensions of the theory that we discuss briefly include numerical calculations on spherical water droplets in oil, and analytical calculations of the linear PB-equation for a finite oil-water interfacial width.Comment: 9 pages, 4 figures, accepted by JPCM for proceedings of LMC

    The mean-field theory for attraction between like-charged macromolecules

    Full text link
    A mean-field theory based on Gibbs-Bogoliubov inequality is constructed to study the interactions between two like-charged polyions. It is shown that contrary to the previously established paradigm, a properly constructed mean-field theory can quantitatively account for the attractive interactions between two like-charged rods.Comment: 5 pages, 2 figures, elsart.sty neede
    corecore